skip to main content


Search for: All records

Creators/Authors contains: "Connors, Martin G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Dipolarizing flux bundles (DFBs) have been suggested to transport energy and momentum from regions of reconnection in the magnetotail to the high latitude ionosphere, where they can generate localized ionospheric currents that can produce large nighttime geomagnetic disturbances (GMDs). In this study we identified DFBs observed in the midnight sector from ∼7 to ∼10 REby THEMIS A, D, and E during days in 2015–2017 whose northern hemisphere magnetic footpoints mapped to regions near Hudson Bay, Canada, and have compared them to isolated GMDs observed by ground magnetometers. We found 6 days during which one or more of these DFBs coincided to within ±3 min with ≥6 nT/s GMDs observed by latitudinally closely spaced ground‐based magnetometers located near those footpoints. Spherical elementary current systems (SECS) maps and all‐sky imager data provided further characterization of two events, showing short‐lived localized intense upward currents, auroral intensifications and/or streamers, and vortical perturbations of a westward electrojet. On all but one of these days the coincident DFB—GMD pairs occurred during intervals of high‐speed solar wind streams but low values of SYM/H. The observations reported here indicate that isolated DFBs generated under these conditions influence only limited spatial regions nearer Earth. In some events, in which the DFBs were observed closer to Earth and with lower Earthward velocities, the GMDs occurred slightly earlier than the DFBs, suggesting that braking had begun before the time of the DFB observation.

     
    more » « less
  2. null (Ed.)
  3. Abstract

    Large changes of the magnetic field associated with magnetic perturbation events (MPEs) with amplitudes |ΔB| of hundreds of nT and 5–10 min duration have been frequently observed within a few hours of midnight. This study compares the statistical location of nighttime MPEs with |dB/dt| ≥ 6 nT/s within the auroral current system observed during 2015 and 2017 at two stations, Cape Dorset and Kuujjuarapik, in Eastern Canada. Maps of the two dimensional nightside auroral current system were derived using the Spherical Elementary Current Systems (SECS) technique. Analyses were produced at each station for all events, and for premidnight and postmidnight subsets. We examine four MPE intervals in detail, two accompanied by auroral images, and show the varying associations between MPEs and overhead ionospheric current systems including electrojets and the field‐aligned like currents. We find 225 of 279 MPEs occurred within the westward electrojet and only 3 within the eastward electrojet. For the premidnight MPEs 100 of 230 events occurred within the Harang current system while many of the remainder occurred within either the downward region 1 current system or the upward region 2 current system. Many of the 49 postmidnight MPEs occurred in either the downward region 1 (11 events) or upward region 2 current system (27 events). These result suggest that the source of MPEs in the premidnight sector is somewhere between the inner to mid plasma sheet and the source for the MPEs in the postmidnight sector is somewhere between the inner magnetosphere and the inner plasma sheet.

     
    more » « less
  4. Abstract

    Rapid changes of magnetic fields associated with nighttime magnetic perturbation events (MPEs) with amplitudes |ΔB| of hundreds of nT and 5–10 min duration can induce geomagnetically induced currents (GICs) that can harm technological systems. Here we present superposed epoch analyses of large nighttime MPEs (|dB/dt| ≥ 6 nT/s) observed during 2015 and 2017 at five stations in Arctic Canada ranging from 64.7° to 75.2° in corrected geomagnetic latitude (MLAT) as functions of the interplanetary magnetic field (IMF), solar wind dynamic pressure, density, and velocity, and the SML, SMU, and SYM/H geomagnetic activity indices. Analyses were produced for premidnight and postmidnight events and for three ranges of time after the most recent substorm onset: (a) 0–30 min, (b) 30–60 min, and (c) >60 min. Of the solar wind and IMF parameters studied, only the IMF Bz component showed any consistent temporal variations prior to MPEs: a 1–2 h wide 1–3 nT negative minimum at all stations beginning ∼30–80 min before premidnight MPEs, and minima that were less consistent but often deeper before postmidnight MPEs. Median, 25th, and 75th percentile SuperMAG auroral indices SML (SMU) showed drops (rises) before pre‐ and post‐midnight type A MPEs, but most of the MPEs in categories B and C did not coincide with large‐scale peaks in ionospheric electrojets. Median SYM/H indices were flat near −30 nT for premidnight events and showed no consistent temporal association with any MPE events. More disturbed values of IMF Bz, Psw, Nsw, SML, SMU, and SYM/H appeared postmidnight than premidnight.

     
    more » « less